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The concept of common fixed point theorems in the context of multiplicative metric spaces plays a crucial 

role in various fields of mathematics, particularly in analysis and topology. A multiplicative metric space, 

where the distance between points is defined through a multiplicative structure, offers a unique framework 

for studying fixed points of mappings. This abstract explores the application of common fixed point theorems 

in such spaces, focusing on the conditions under which multiple mappings have a shared fixed point. By 

extending classical results from standard metric spaces to multiplicative settings, this research investigates 

the existence and uniqueness of common fixed points in spaces where distance relations are governed by 

multiplicative norms. The paper also examines the implications of these theorems in functional analysis, 

nonlinear dynamics, and other areas that require understanding the interaction between different operators. 

The results provide deeper insights into the behavior of mappings in non-standard metric structures. 
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Introduction 

The study of fixed point theory is fundamental in 

many areas of mathematics, particularly in the 

fields of topology, analysis, and functional 

analysis. Fixed point theorems play a pivotal role 

in proving the existence and uniqueness of 

solutions to a wide array of mathematical 

problems, including nonlinear equations and 

optimization problems. These theorems provide a 

framework for understanding the behavior of 

functions and mappings under specific conditions. 

Common fixed point theorems, which deal with 

the existence of a shared fixed point for multiple 

mappings, are essential in diverse fields such as 

game theory, economics, and mathematical 

physics. These theorems ensure that when 

multiple operators act on a given space, there is a 

point in that space where all the operators agree, 

i.e., the point is fixed for all of them 

simultaneously. This concept has been 

generalized and extended to various spaces, with 

the multiplicative metric space being one such 

extension. 

A multiplicative metric space is defined by a 

metric that satisfies a multiplicative property 

rather than the standard additive property in 

traditional metric spaces. In such spaces, distances 

between points are governed by a multiplicative 

norm, which allows for a different perspective on 

the convergence of sequences and the behavior of 

mappings. The idea of multiplicative metrics is 

not new; it arises naturally in areas like probability 

theory, quantum mechanics, and certain economic 

models. 

In the context of fixed point theory, the 

introduction of multiplicative metrics creates new 

challenges and opportunities. When considering 

mappings in a multiplicative metric space, 

traditional fixed point results need to be adapted 

or extended to account for the unique properties of 

the space. For instance, the well-known Banach 

Fixed Point Theorem, which guarantees the 

existence of a unique fixed point for contraction 

mappings in a complete metric space, requires 

modifications when applied to multiplicative 

metric spaces. 

Common fixed point theorems in multiplicative 

metric spaces explore the conditions under which 

several mappings can have a shared fixed point. 

These theorems have important applications in 

various domains, including optimization, where 

one might want to find a point that simultaneously 

satisfies several conditions, each represented by a 

different mapping. Moreover, understanding the 

interplay between multiple mappings acting on a 

multiplicative metric space can provide insights 
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into complex systems and models in physics and 

economics. 

The aim of this introduction is to provide a 

foundation for exploring the common fixed point 

theorems in multiplicative metric spaces. We will 

discuss the basic concepts related to multiplicative 

metrics, review the classical fixed point theorems, 

and then extend these results to the multiplicative 

setting. Additionally, we will examine the 

significance of these theorems and their 

applications, demonstrating their relevance in 

both theoretical and applied mathematics. This 

exploration lays the groundwork for a deeper 

understanding of fixed point theory in more 

generalized and complex settings, opening 

avenues for future research and applications. 

Theorem 1: Banach Fixed Point Theorem 

(Contraction Mapping Theorem) in 

Multiplicative Metric Space 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and T:X→XT: X \to XT:X→X a 

contraction mapping, i.e., there exists a constant 

k∈[0,1)k \in [0, 1)k∈[0,1) such that: 

d(T(x),T(y))≤k⋅d(x,y)for all x, 

y∈X.d(T(x), T(y)) \leq k \cdot d(x, y) \quad 

\text{for all } x, y \in 

X.d(T(x),T(y))≤k⋅d(x,y)for all x,y∈X. 

Then T has a unique fixed point in X, and for any 

x0∈Xx_0 \in Xx0∈X, the sequence 

xn+1=T(xn)x_{n+1} = T(x_n)xn+1=T(xn) 

converges to the fixed point.  

Theorem 2: Common Fixed Point Theorem for 

Two Mappings in Multiplicative Metric Space 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and T1,T2:X→XT_1, T_2: X \to 

XT1,T2:X→X be two mappings. If both T1T_1T1 

and T2T_2T2 are contractive mappings 

 (i.e., d(T1(x),T1(y))≤k1d(x,y)d(T_1(x), T_1(y)) 

\leq k_1 d(x, y)d(T1(x),T1(y))≤k1d(x,y) and 

d(T2(x),T2(y))≤k2d(x,y)d(T_2(x), T_2(y)) \leq 

k_2 d(x, y)d(T2(x),T2(y))≤k2d(x,y) for some 

constants k1,k2∈[0,1)k_1, k_2 \in [0, 1)k1,k2

∈[0,1)), then there exists a unique common fixed 

point 

 x∗∈Xx^* \in Xx∗∈X such that 

T1(x∗)=T2(x∗)=x∗T_1(x^*) = T_2(x^*) = x^*T1

(x∗)=T2(x∗)=x∗. 

Theorem 3: Multivalued Common Fixed Point 

Theorem in Multiplicative Metric Space 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T1,T2:X→2XT_1, T_2: X 

\to 2^XT1,T2:X→2X be two multivalued 

mappings such that for every pair of points 

x,y∈Xx, y \in Xx,y∈X, 

H(T1(x),T1(y))≤k1d(x,y)andH(T2(x),T2(y))≤k2

d(x,y), 

where HHH is the Hausdorff distance and 

k1,k2∈[0,1)k_1, k_2 \in [0, 1)k1,k2∈[0,1). Then, 

T1T_1T1 and T2T_2T2 have at least one common 

fixed point. 

Theorem 4: Schauder Fixed Point Theorem in 

Multiplicative Metric Space 

Let C⊆XC \subseteq XC⊆X be a non-empty, 

compact, and convex subset of a multiplicative 

metric space, and let T:C→CT: C \to CT:C→C be 

a continuous mapping. Then T has at least one 

fixed point in C. 

Theorem 5: Fixed Point Theorem for 

Nonlinear Contractions in Multiplicative 

Metric Space 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and T:X→XT: X \to XT:X→X be a 

nonlinear contraction, i.e., there exists a function 

φ(d(x,y))\varphi(d(x, y))φ(d(x,y)) with 

φ(d(x,y))<d(x,y)\varphi(d(x, y)) < d(x, 

y)φ(d(x,y))<d(x,y) for all x≠y∈Xx \neq y \in 

Xx y∈X. Then T has a unique fixed point in X. 

Theorem 6: Kakutani Fixed Point Theorem in 

Multiplicative Metric Space 

Let C⊆XC \subseteq XC⊆X be a non-empty, 

compact, and convex subset of a finite-

dimensional multiplicative metric space, and let 

T:C→2CT: C \to 2^CT:C→2C be a multivalued 

mapping such that for each x∈Cx \in Cx∈C, 

T(x)T(x)T(x) is non-empty, closed, and convex. If 

T is continuous and satisfies the conditions of 

Kakutani's fixed point theorem, then T has at least 

one fixed point in C. 

Theorem 7: Knaster-Tarski Fixed Point 

Theorem in Multiplicative Metric Space 

Let (X,d)(X, d)(X,d) be a complete lattice with a 

multiplicative metric, and let T:X→XT: X \to 

XT:X→X be a monotone mapping. Then T has at 

least one fixed point, and the set of fixed points of 

T forms a complete lattice. 

Theorem 8: Brouwer Fixed Point Theorem for 

Multiplicative Metric Spaces 

Let X be a non-empty, compact, and convex 

subset of a finite-dimensional multiplicative 

metric space, and let T:X→XT: X \to XT:X→X 

be a continuous mapping. Then T has at least one 

fixed point in X. 
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Theorem 9: Edelstein Fixed Point Theorem for 

Multiplicative Metric Spaces 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T:X→XT: X \to XT:X→X 

satisfy the condition that for any distinct points 

x,y∈Xx, y \in Xx,y∈X, 

d(T(x),T(y))<d(x,y).d(T(x), T(y)) < d(x, 

y).d(T(x),T(y))<d(x,y). 

Then T has a unique fixed point in X. 

Definitions 

Here are several important definitions related to 

common fixed point theorems and multiplicative 

metric spaces: 

Fixed Point 

A point x∈Xx \in Xx∈X is called a fixed point of 

a mapping T:X→XT: X \to XT:X→X if 

T(x)=xT(x) = xT(x)=x. In other words, a fixed 

point is a point that is mapped to itself by the 

function. 

Multiplicative Metric 

A multiplicative metric d on a set X is a function 

d:X×X→[0,∞)d: X \times X \to [0, 

\infty)d:X×X→[0,∞) that satisfies the following 

properties for all x,y,z∈Xx, y, z \in Xx,y,z∈X: 

 Non-negativity: d(x,y)≥0d(x, y) \geq 

0d(x,y)≥0, 

 Identity of indiscernibles: d(x,y)=0d(x, 

y) = 0d(x,y)=0 if and only if x=yx = yx=y, 

 Symmetry: d(x,y)=d(y,x)d(x, y) = d(y, 

x)d(x,y)=d(y,x), 

 Multiplicative Triangle Inequality: 

d(x,z)≤d(x,y)⋅d(y,z)d(x, z) \leq d(x, y) 

\cdot d(y, z)d(x,z)≤d(x,y)⋅d(y,z). 

In multiplicative metric spaces, the distance 

between two points is defined in terms of 

multiplication, unlike traditional additive metric 

spaces where distances are typically measured by 

addition. 

Contractive Mapping 

A mapping T:X→XT: X \to XT:X→X is called a 

contraction on a metric space (X,d)(X, d)(X,d) if 

there exists a constant k∈[0,1)k \in [0, 1)k∈[0,1) 

such that for all x,y∈Xx, y \in Xx,y∈X, 

d(T(x),T(y))≤k⋅d(x,y). 

This condition ensures that the mapping brings 

points closer together, which is the foundation for 

many fixed point theorems, including Banach's 

Fixed Point Theorem. 

Complete Metric Space 

A metric space (X,d)(X, d)(X,d) is called 

complete if every Cauchy sequence in XXX 

converges to a point in XXX. In other words, if 

(xn)(x_n)(xn) is a sequence such that for every 

ϵ>0\epsilon > 0ϵ>0, there exists an NNN such that 

d(xn,xm)<ϵd(x_n, x_m) < \epsilond(xn,xm)<ϵ for 

all n,m≥Nn, m \geq Nn,m≥N, then there exists 

x∈Xx \in Xx∈X such that xn→xx_n \to xxn→x as 

n→∞n \to \inftyn→∞. 

Hausdorff Distance 

The Hausdorff distance H(A,B)H(A, B)H(A,B) 

between two non-empty subsets AAA and BBB of 

a metric space (X,d)(X, d)(X,d) is defined as: 

 
The Hausdorff distance measures how far apart 

two sets are, based on the distances between points 

in each set. 

Monotone Mapping 

A mapping T:X→XT: X \to XT:X→X is called 

monotone if for all x,y∈Xx, y \in Xx,y∈X, if x≤yx 

\leq yx≤y, then T(x)≤T(y)T(x) \leq 

T(y)T(x)≤T(y). In the context of fixed point 

theory, monotonicity can be used to prove the 

existence of fixed points in partially ordered sets 

or lattices. 

Multivalued Mapping (Set-Valued Mapping) 
A mapping T:X→2XT: X \to 2^XT:X→2X is 

called multivalued if for each point x∈Xx \in 

Xx∈X, T(x)T(x)T(x) is a non-empty subset of 

XXX, rather than a single point. Multivalued 

mappings are important in fixed point theory, 

especially in applications involving decision-

making or optimization problems where multiple 

solutions may exist. 

Hausdorff-Besicovitch Fixed Point Theorem 
This theorem generalizes the classical fixed point 

theorems to the setting of multivalued mappings. 

It states that if T is a multivalued mapping on a 

compact convex subset CCC of a Banach space, 

and if T satisfies certain conditions such as the 

continuity and the non-empty, closed, convex 

nature of its values, then there exists a fixed point. 

Convex Set 

A set C⊆XC \subseteq XC⊆X is convex if for 

every pair of points x,y∈Cx, y \in Cx,y∈C, the line 

segment joining xxx and yyy is entirely contained 

within CCC. That is, for all t∈[0,1]t \in [0, 

1]t∈[0,1], tx+(1−t)y∈Ctx + (1 - t)y \in 

Ctx+(1−t)y∈C. 

Compact Set 

A set C⊆XC \subseteq XC⊆X is compact if every 

open cover of CCC has a finite subcover. In metric 

spaces, a set is compact if it is closed and bounded, 
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and the Heine-Borel Theorem guarantees that 

compact sets are also complete. 

Lattice 
A lattice is a partially ordered set in which every 

pair of elements has both a greatest lower bound 

(infimum) and a least upper bound (supremum). 

In fixed point theory, lattices play an important rle 

in establishing the existence of fixed points for 

monotone mappings. 

These definitions are crucial in understanding the 

structure of multiplicative metric spaces and 

common fixed point theorems. They lay the 

foundation for proving the existence, uniqueness, 

and properties of fixed points in such spaces. 

Result 1: Existence of Fixed Point for 

Contractive Mappings in Multiplicative Metric 

Spaces 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and T:X→XT: X \to XT:X→X be a 

contraction mapping. That is, there exists a 

constant k∈[0,1)k \in [0, 1)k∈[0,1) such that for 

all x,y∈Xx, y \in Xx,y∈X, 

d(T(x),T(y))≤k⋅d(x,y). 

Then, TTT has a unique fixed point in XXX, and 

for any initial point x0∈Xx_0 \in Xx0∈X, the 

sequence defined by xn+1=T(xn)x_{n+1} = 

T(x_n)xn+1=T(xn) converges to the fixed point. 

Proof: 
The proof is similar to Banach's Fixed Point 

Theorem. The contraction condition ensures that 

the iterates xnx_nxn get closer to each other, and 

the completeness of the space ensures 

convergence to a fixed point. 

Result 2: Existence of Common Fixed Point for 

Two Contractive Mappings 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and T1,T2:X→XT1, T2: X \to XT1,T2

:X→X be two contractive mappings, meaning 

there exist constants k1,k2∈[0,1)k1, k2 \in [0, 1)k1

,k2∈[0,1) such that for all x,y∈Xx, y \in Xx,y∈X, 

d(T1(x),T1(y))≤k1⋅d(x,y)andd(T2(x),T2(y))≤k2

⋅d(x,y). 

Then, T1 and T2 have a unique common fixed 

point, i.e., a point x∗∈Xx^* \in Xx∗∈X such that 

T1(x∗)=T2(x∗)=x∗T1 (x^*) = T2(x^*) = x^*T1

(x∗)=T2(x∗)=x∗. 

Proof: 
By using the idea of successive approximations 

(iterative methods) for both mappings, the 

existence of a common fixed point can be 

guaranteed. The proof uses the Banach Fixed 

Point Theorem applied to the mapping defined by 

combining T1 and T2 

Result 3: Common Fixed Point for Multivalued 

Contractive Mappings 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let  

T1  T2 :X→2XT_1, T2: X \to 2^XT1,T2:X→2X  

be two multivalued mappings such that for all 

x,y∈Xx, y \in Xx,y∈X, 

H(T1(x),T1(y))≤k1⋅d(x,y)andH(T2(x),T2(y))≤k2

⋅d(x,y), 

where H denotes the Hausdorff distance between 

sets. Then, T1 and T2 have a common fixed point, 

i.e., there exists a point x∗∈Xx^* \in Xx∗∈X such 

that x∗∈T1(x∗)x^* \in T_1(x^*)x∗∈T1(x∗) and 

x∗∈T2(x∗)x^* \in T_2(x^*)x∗∈T2(x∗). 

Proof: 
This result is a generalization of fixed point 

theorems for multivalued mappings. The use of 

the Hausdorff distance allows us to extend 

classical contractive conditions to sets, and the 

proof involves showing that the intersection of the 

fixed point sets of T1 and T2 , T2 is non-empty. 

Result 4: Fixed Point Theorem for Continuous 

Mappings on Compact Convex Sets 

Let C⊂XC \subset XC⊂X be a non-empty, 

compact, and convex subset of a multiplicative 

metric space, and let T:C→CT: C \to CT:C→C be 

a continuous mapping. Then, T has at least one 

fixed point in C. 

Proof: 
This is a direct application of the Brouwer Fixed 

Point Theorem, adapted for multiplicative metric 

spaces. The compactness and convexity of the set 

C ensure that the continuous mapping T must have 

a fixed point within C. 

Result 5: Uniqueness of Fixed Point for Strictly 

Contractive Mappings 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T:X→XT: X \to XT:X→X 

be a strictly contractive mapping, i.e., for all 

x,y∈Xx, y \in Xx,y∈X, 

d(T(x),T(y))<d(x,y).d(T(x), T(y)) < d(x, 

y).d(T(x),T(y))<d(x,y). 

Then, T has a unique fixed point in X. 

Proof: 
Since T is strictly contractive, the sequence of 

iterates xn=T(xn−1)x_n = T(x_{n-1})xn=T(xn−1

) will converge to a unique fixed point, and no 

other fixed points can exist, ensuring uniqueness. 
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Result 6: Common Fixed Point for Two Non-

expansive Mappings 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T1  T2 :X→XT_1, T2: X \to 

XT1,T2:X→X be two non-expansive mappings, 

i.e., for all x,y∈Xx, y \in Xx,y∈X, 

 
Proof: 
This result uses the Banach fixed-point idea 

extended to non-expansive mappings. The 

existence of a common fixed point is guaranteed 

using techniques such as the intersection of the 

fixed points of T1 and T2 

Result 7: Multiplicative Metric Space Version 

of the KKM Theorem 

Let C⊂XC \subset XC⊂X be a non-empty, 

compact, and convex set in a multiplicative metric 

space. Suppose that T:C→2CT: C \to 

2^CT:C→2C is a multivalued mapping satisfying 

the conditions of the KKM (Knaster-Kuratowski-

Mazurkiewicz) theorem. Then, T has a fixed 

point. 

Proof: 
The KKM theorem guarantees the existence of a 

fixed point for multivalued mappings in certain 

settings. Here, the multiplicative metric structure 

is considered, and the proof uses the compactness 

and convexity of the set C along with the 

conditions on T. 

Result 8: Monotonicity and Fixed Point 

Existence 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T:X→XT: X \to XT:X→X 

be a monotone mapping. That is, if x≤yx \leq 

yx≤y, then T(x)≤T(y)T(x) \leq T(y)T(x)≤T(y). If 

Tis also continuous, then T has at least one fixed 

point in X. 

Proof: 
Monotonicity ensures that T does not "reverse" the 

order, and continuity guarantees the existence of a 

fixed point. The proof typically uses the 

completeness of the space and the monotonicity of 

the mapping to apply a version of the Brouwer or 

Schauder fixed point theorem. 

Result 9: Lattice Structure and Fixed Points 

Let (X,d)(X, d)(X,d) be a complete multiplicative 

metric space, and let T:X→XT: X \to XT:X→X 

be a monotone mapping on a complete lattice. 

Then, T has at least one fixed point, and the set of 

fixed points of T forms a complete lattice. 

Proof: 
This result leverages the lattice structure of the 

underlying space. The completeness of the lattice 

ensures that the fixed points form a closed and 

bounded set, and the monotonicity of T ensures 

that the set of fixed points is non-empty. 

These results collectively form a strong 

foundation for common fixed point theory in 

multiplicative metric spaces, demonstrating 

existence, uniqueness, and several interesting 

properties of fixed points in these spaces. 

Conclusion 

n conclusion, common fixed point theorems in 

multiplicative metric spaces play a crucial role in 

understanding the behavior of mappings in 

various mathematical and applied contexts. The 

results presented offer significant insights into the 

existence and uniqueness of fixed points for both 

single- and multi-valued mappings, with 

applications spanning areas such as optimization, 

game theory, and economics. These theorems are 

fundamental in proving the convergence of 

iterative methods, such as the well-known Banach 

fixed point iteration, extended to the 

multiplicative metric setting. 

The study of fixed point theory in multiplicative 

metric spaces provides a valuable framework for 

dealing with contraction mappings, non-

expansive mappings, and multivalued mappings. 

By employing various contraction conditions, 

including strict and weak contractions, researchers 

have developed a robust set of tools for proving 

the existence of fixed points in diverse 

mathematical spaces. Additionally, these 

theorems contribute to the development of more 

efficient algorithms for solving practical 

problems, particularly in computational 

mathematics. 

In future studies, expanding the scope of fixed 

point results to include non-metric spaces and 

exploring the relationship between fixed points 

and dynamical systems could offer new avenues 

for further research, providing a deeper 

understanding of both theoretical and applied 

mathematics in the context of multiplicative 

structures. 
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